## ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

### Нижегородский государственный университет им. Н.И. Лобачевского

| • | 7   | • | ` | Г |
|---|-----|---|---|---|
| А | . 3 | l | , | ı |

Конспект лекций по курсу неорганической химии

Для студентов, обучающихся по направлению подготовки 020100 «Химия» и специальностям 020101 «Химия», 240306 «Химическая технология монокристаллов, материалов и изделий электронной техники»

Нижний Новгород 2012 УДК 546 ББК 24

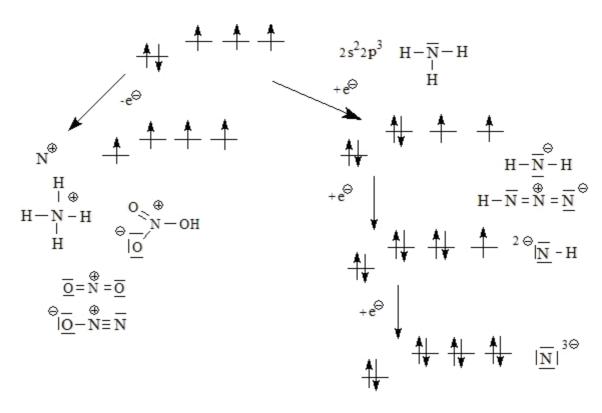
АЗОТ: Составитель: Сибиркин А.А. Конспект лекций по курсу неорганической химии. – Нижний Новгород, 2012. – с.

Рецензент:

В методической разработке представлен программный материал, относящийся к химии азота и его соединений.

Конспект лекций предназначен для студентов ННГУ, обучающихся по направлению подготовки 020100 "Химия" и специальностям 020101 "Химия", 240306 "Химическая технология монокристаллов, материалов и изделий электронной техники".

#### Азот


## Нахождение в природе

- 1. Атмосфера в виде N<sub>2</sub>, 78 % об.
- 2. Природные нитраты селитры.

KNO<sub>3</sub> NaNO<sub>3</sub> Ca(NO<sub>3</sub>)<sub>2</sub> индийская селитра чилийская селитра

норвежская селитра, нитрокальцит

# Строение атома и валентные возможности



### Изотопный состав

Содержит два стабильных изотопа  $^{14}$ N (99.635 %) и  $^{15}$ N (0.365 %). Известны два короткоживущих изотопа  $^{13}$ N и  $^{16}$ N.

## Простое вещество азот $N_2$

## Получение.

- 1. Выделение из сжиженного воздуха ректификацией.
- 2. Взаимодействие соединений азота  $N^{+3}$  и  $N^{-3}$ .

$$\begin{array}{c} NH_4NO_2 \\ NH_4Cl + KNO_2 \end{array} \rightarrow N_2 + \begin{array}{c} H_2O \\ KCl + H_2O \end{array}$$
 
$$(NH_2)_2CO \\ NH_2SO_2OH \end{array} + HNO_2 \rightarrow N_2 + \begin{array}{c} CO_2 + H_2O \\ H_2SO_4 \end{array}$$

3.Окисление аммиака, гидразина, гидроксиламина и их производных:

$$\frac{NH_3}{N_2H_4} + O_2 \rightarrow N_2 + H_2O$$
 (без катализатора)

$$\begin{array}{ccc} & H_2O_2 & H_2O \\ N_2H_4 + & KMnO_4 + H_2SO_4 & \rightarrow N_2 + & K_2SO_4 + MnSO_4 + H_2O \\ & H_6TeO_6 & Te + H_2O \end{array}$$

$$NH_2OH + FeOOH \atop Cu(OH)_2 \rightarrow N_2 + Fe(OH)_2 \atop Cu_2O + H_2O$$

4. Восстановление оксидов азота:

$$\begin{array}{ccc} N_2O & H_2 & H_2O \\ NO & + & P_4 \\ NO_2 & C & CO_2 \end{array}$$

## Строение.

Двухатомная молекула. За счет тройной связи обладает исключительной прочностью и весьма малой химической активностью.

### Физические свойства.

Бесцветный газ, кип. -196 °C.

#### Химические свойства.

1. Окислительные свойства. Проявляются в жестких условиях. Продуктом восстановления являются производные  $N^{-3}$ .

$$H_2$$
  $NH_3$  (кат. Pt, 400 °C)   
 С графит  $C_2N_2$  (электрич. разряд)   
  $N_2$  +  $M_3$   $N_3$  (100 °C, давление)   
  $N_2$  +  $M_3$   $N_2$  800 °C   
  $A_1$   $A_1$   $A_1$   $A_2$   $A_3$   $A_4$   $A_4$   $A_4$   $A_4$   $A_5$   $A_5$ 

2. Мягкое восстановление растворами солей  $Cr^{2+}$  и  $V^{2+}$  до производных гидразина.

$$N_2+$$
  $CrCl_2 \atop VCl_2 + HCl \rightarrow N_2H_5Cl +  $CrCl_3 \atop VOCl_2$$ 

3. Восстановительные свойства (с более электроотрицательными элементами).

## Применение.

- 1. Создание инертной среды (газ-носитель в хроматографии, разбавление фтора  $F_2$  и других активных веществ, изоляция от окисления кислородом воздуха).
  - 2. Жидкий азот хладоагент.

## Cоединения $N^{-3}$

$$NH_3$$
  $NH_4^+$   $NH_2^ NH^{2-}$   $N^{3-}$  ковалентные аммиак аммония амиды имиды имиды нитриды, например,  $Cl_3N$ 

### Получение.

1. Восстановление  $N_2$  и его соединений:

2. Замещение водорода в аммиаке на металлы приводит к амидам, имидам и нитридам:

$$2\text{Li} + 2\text{NH}_3 \rightarrow 2\text{Li}\text{NH}_2 + \text{H}_2,$$
  
 $2\text{Li}\text{NH}_2 + 2\text{Li} \rightarrow 2\text{Li}_2\text{NH} + \text{H}_2,$   
 $2\text{Li}_2\text{NH} + 2\text{Li} \rightarrow 2\text{Li}_3\text{N} + \text{H}_2.$ 

- 3. Обменные реакции.
- 3а. Действие кислот превращает вещество, расположенное в ряду

$$NH_4^+ \leftrightarrow NH_3 \leftrightarrow NH_2^- \leftrightarrow NH^{2-} \leftrightarrow N^{3-}$$

в сторону стоящего слева, действие оснований – в сторону расположенного правее.

$$NH_3 + HCl \rightarrow NH_4Cl,$$
 $NH_4Cl + NaOH \rightarrow NH_3 + NaCl + H_2O,$ 
 $3NH_3 + FeCl_3 + 3H_2O \rightarrow 3NH_4Cl + Fe(OH)_3 \downarrow.$ 
© 2008 – 2012 А.А.Сибиркин

ПО

3б. Взаимное превращение производных аммиака обменным реакциям. Вещества, расположенные слева в ряду

$$NH_4^+ \leftrightarrow NH_3 \leftrightarrow NH_2^- \leftrightarrow NH^{2-} \leftrightarrow N^{3-}$$

передают ионы водорода стоящим правее несоседним веществам, причем в результате образуются вещества, расположенные между ними.

$$NH_4Cl + LiNH_2 \rightarrow 2NH_3 + LiCl,$$
  
 $6NH_4Cl + Mg_3N_2 \rightarrow 3MgCl_2 + 8NH_3.$ 

## Строение.

См. структурные формулы в разделе «Строение атома азота и его валентные возможности». Молекула аммиака имеет форму искаженного тетраэдра. Ион аммония представляет собой правильный тетраэдр.

Все рассматриваемые соединения азота  $N^{-3}$  можно представить как продукты присоединения одного (имид-ион), двух (амид-ион), трех (аммиак) или четырех (ион аммония) атомов водорода к нитрид-иону  $N^{3-}$ . Структурными аналогами этих соединений можно считать производные кислорода  $O^{-2}$  (оксиды, гидроксиды, воду, ион гидроксония).

#### Физические свойства.

Аммиак  $NH_3$  – бесцветный газ с резким запахом. Пл. –78 °C, кип. –33 °C. Обладает высокой растворимостью в воде за счет образования водородных связей.

Соли аммония – твердые вещества, хорошо растворимые в воде, разлагающиеся при нагревании.

Амиды, имиды и нитриды – твердые вещества, реагируют с водой.

#### Химические свойства.

- 1. Обменные реакции весьма характерны.
- 1а. Взаимное кислотно-основное превращение соединений азота  $N^{-3}$ . Аналогично превращаются производные кислорода  $O^{-2}$ . Примеры см. получение соединений  $N^{-3}$ , раздел 3. К этому классу процессов относится гидролиз ионных амидов и нитридов.

$$NaNH_2 + H_2O \rightarrow NaOH + NH_3$$
,  
 $Mg_3N_2 + 6H_2O \rightarrow 3Mg(OH)_2 + 2NH_3$ .

1б. Аммиак является лигандом в аммиачных комплексах. Образование аммиачных комплексов объясняет растворимость осадков гидроксидов ряда элементов в растворе аммиака.

$$Cu(OH)_2 + 4NH_3 \rightarrow [Cu(NH_3)_4](OH)_2$$
.

1в. Замещение атомов водорода в аммиаке на другие электроположительные по отношению к азоту атомы, например, атомы углерода.

$$CO + NH_3 \rightarrow HCN + H_2O$$
 (циановодород)  $CO_2 + 2NH_3 \rightarrow (NH_2)_2CO + H_2O$  (карбамид)  $CICN + 2NH_3 \rightarrow NH_2CN + NH_4Cl$  (цианамид)  $CS_2 + NH_3 \rightarrow HNCS + H_2S$  (роданистый водород)  $RCH=O + NH_3 \rightarrow RCH=NH + H_2O$  (альдимин)  $R_2C=O + NH_3 \rightarrow R_2C=NH + H_2O$  (кетимин)

1г. Образование амидных соединений ртути. К этим процессам относится качественная реакция на аммиак и соли аммония с реактивом Несслера — раствором тетраиодомеркурата калия  $K_2[HgI_4]$  и щелочи. Образуется коричневый осадок иодида ангидрооснования Миллона:

$$\begin{array}{c} NH_3 \\ NH_4Cl \end{array} + KOH + K_2[HgI_4] \rightarrow [OHg_2NH_2]I + KI + \begin{array}{c} H_2O \\ KCl + H_2O \end{array}$$

1д. Термическое разложение солей аммония. Является обменной реакцией, если анион соли не проявляет окислительного действия.

$$NH_4Cl \rightarrow NH_3 + HCl,$$
  
 $(HN_4)_2SO_4 \rightarrow NH_3 + NH_4HSO_4,$   
 $NH_4H_2PO_4 \rightarrow NH_3 + H_3PO_4.$ 

2. Окислительные свойства нехарактерны. За счет атома азота  $N^{-3}$  они неосуществимы, так как  $N^{-3}$  – низшая степень окисления. Окислительные свойства могут проявляться за счет атомов водорода  $H^{+1}$  преимущественно аммиаком и солями аммония. Примеры см. также получение соединений  $N^{-3}$ , раздел 2.

$$NH_3 + \frac{Li}{LiH} \rightarrow LiNH_2 + H_2$$
  
 $2NH_4Cl + Mg \rightarrow MgCl_2 + 2NH_3 + H_2,$   
 $NaNH_2 + C \rightarrow NaCN + H_2.$ 

- 3. Восстановительные свойства весьма характерны.
- За. Окисление галогенами и гипогалогенитами.

$$NH_3 + {F_2 \over NaOCl} 
ightarrow {NH_3 \over N_2H_4} + {NH_4F \over NaCl} (Bo3горается) \ NH_3 + {Cl_2 \over NaOCl} 
ightarrow {NH_4Cl} / {NaCl} (20 °C) \ N_2H_4 + {NaCl} (100 °C) \ N_2H_4 + H_2O$$

 $NH_4Cl + 3Cl_2 \rightarrow NCl_3 + 4HCl$  (конц. раствор  $NH_4Cl$ ).

Взаимодействие йода с аммиаком протекает иначе – йод диспропорционирует, азот сохраняет низшую степень окисления:

$$5NH_3 + 3I_2 \rightarrow I_3N \cdot NH_3 + 3NH_4I$$
.

Нитриды галогенов  $Cl_3N$ ,  $Br_3N \cdot 6NH_3$ ,  $I_3N \cdot NH_3$  содержат атом галогена в положительной степени окисления  $X^{+1}$ . Продуктами их гидролиза являются гипогалогенит-ионы  $XO^-$ .

$$Cl_3N + H_2O \longrightarrow NH_3 + HOCl NaOCl$$

Нитриды хлора, брома и йода взрываются, образуя  $N_2$ .

$$Cl_3N$$
  $Cl_2$   
 $Br_3N \cdot 6NH_3 \rightarrow N_2 + HBr + NH_3$   
 $I_3N \cdot NH_3$   $HI$ 

3б. Окисление до  $N_2$  действием большинства окислителей, особенно при нагревании:

$$4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$$
 (горение, без катализатора)

3в. Каталитическое окисление до NO – первая стадия в производстве азотной кислоты из аммиака:

$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O (800 \, ^{\circ}\text{C}, кат. - сплав Pt и Rh)$$

3г. Разложение солей аммония, если анион соли проявляет окислительные свойства, сопровождается, как правило, образованием азота.

$$\begin{array}{c} (NH_4)_2Cr_2O_7 \\ NH_4NO_2 \end{array} \rightarrow N_2 + \begin{array}{c} Cr_2O_3 + H_2O \\ H_2O \end{array}$$

Нитрат аммония при разложении образует  $N_2O$ .

$$NH_4NO_3 \rightarrow N_2O + 2H_2O$$
.

3д. Окисление ионных и металлоподобных нитридов сопровождается образованием  $N_2$ .

$$6ZrN + 8HNO_3 + 36HF \rightarrow 6H_2ZrF_6 + 3N_2 + 8NO + 16H_2O$$
.

### Применение.

Аммиак  $NH_3$  используется в производстве минеральных удобрений, в производстве азотной кислоты и солей аммония, является хладоагентом, используется как основание в лабораторной практике.

Хлорид аммония  $NH_4Cl$  используется как флюс при пайке металлов, пригоден как удобрение.

Нитрат аммония  $NH_4NO_3$  используется как минеральное удобрение. Его смеси с металлами, например, алюминием, являются бризантными взрывчатыми веществами.

Амид натрия NaNH<sub>2</sub> используется в органическом синтезе, например, как конденсирующий агент в реакциях сложноэфирной конденсации.

Фосфаты аммония  $NH_4H_2PO_4$  и  $(NH_4)_2HPO_4$  являются смешанными удобрениями (содержат два питательных элемента — азот и фосфор). Их смесь (аммофос) применяется как компонент огнетушащих порошковых составов.

# Cоединения $N^{-2}$

### Гидразин и его производные

$$N_2H_4$$
  $N_2H_5^+$   $N_2H_3^-$  гидразин ион гидразиния (1+) гидразид-ион  $N_2H_4\cdot H_2O$   $N_2H_6^{2+}$  гидразингидрат ион гидразиния (2+)

### Получение.

1. Окисление NH<sub>3</sub> или мочевины гипохлоритом натрия в растворе щелочи.

$$2NH_3 + NaOCl \rightarrow NaCl + H_2O + N_2H_4$$
  
 $(NH_2)_2C=O + NaOCl + NaOH \rightarrow N_2H_4 + NaCl + NaHCO_3$  (kat.  $Mn^{2+}$ )

Процесс окисления аммиака включает стадию образования хлорамина:

$$NH_3 + NaOCl \rightarrow NaCl + NH_2Cl + H_2O$$
, далее  $NH_2Cl + NH_3 \rightarrow N_2H_4 + HCl$ .

Хлороводород связывается раствором NaOH.

2. Восстановление  $N_2$  солями  $Cr^{2+}$  или  $V^{2+}$ . Выход солей гидразиния относительно низкий.

$$N_2 + {CrCl_2 \over VCl_2} + HCl \rightarrow (N_2H_5)Cl + {CrCl_3 \over VOCl_2}$$

3. Обменные реакции.

$$\begin{array}{c} HCl \ (\text{разб.}) & N_2H_5Cl \\ N_2H_4 + & H_2SO_4 \ (\text{конц.}) \ \rightarrow & (N_2H_6)SO_4 \\ & H_2O & N_2H_4 \cdot H_2O \\ \\ (N_2H_5)_2SO_4 \\ (N_2H_6)SO_4 + & NaOH + H_2O \rightarrow N_2H_4 \cdot H_2O + Na_2SO_4 \\ \\ N_2H_4 \cdot H_2O + & \begin{matrix} NaOH \\ BaO \end{matrix} \rightarrow & N_2H_4 + & \begin{matrix} NaOH \cdot H_2O \\ Ba(OH)_2 \end{matrix} \end{array}$$

#### Строение.

Структурный аналог пероксида водорода и этана. Атомы азота (аналогично атомам кислорода в пероксиде водорода и углерода в этане) находятся в состоянии  $sp^3$ -гибридизации. Фрагменты  $NH_2$  в молекуле повернуты друг относительно друга.

Неподеленные электронные пары атомов азота в молекуле  $N_2H_4$  обусловливают основные свойства этого вещества (аналогия с аммиаком  $NH_3$ ).

#### Физические свойства.

 $N_2H_4$  — бесцветная жидкость, пл. 1 °C, кип. 113 °C.  $N_2H_4 \cdot H_2O$  бесцветная жидкость, пл. —52 °C, кип. 120 °C. Соли гидразиния — твердые вещества, растворимые в воде.

#### Химические свойства.

- 1. Кислотно-основные свойства.
- 1а. Основные свойства. Подобен  $NH_3$ . Проявляются в реакциях с кислотами. Основание более слабое, чем  $NH_3$ . Продуктами взаимодействия гидразина с разбавленными сильными кислотами являются ионы  $N_2H_5^+$ , с концентрированными сильными кислотами образуется  $N_2H_6^{2+}$ .

$$egin{array}{lll} H_2O & N_2H_4 \cdot H_2O, \, \hbox{или} \, N_2H_5OH \\ N_2H_4 + & HCl \, (\hbox{разб.}) & 
ightarrow & N_2H_5Cl \\ & H_2SO_4 \, (\hbox{конц.}) & (N_2H_6)SO_4 \end{array}$$

1б. Гидразин  $N_2H_4$  подобно воде и аммиаку проявляет кислотные свойства по отношению к щелочным металлам.

$$2Na + 2N_2H_4 \rightarrow 2NaN_2H_3 + H_2$$
 гидразид натрия

Соли гидразиния превращаются в гидразин  $N_2H_4$ при действии оснований, в том числе NH<sub>3</sub> как основания, более сильного, чем гидразин.

$$N_2H_5Cl + \begin{array}{c} NaOH \\ NH_3 \end{array} \rightarrow N_2H_4 + \begin{array}{c} NaCl \\ NH_4Cl \end{array}$$

- 2. Окислительно-восстановительные свойства.
- Восстановительные свойства. При превращается в  $N_2$ . В молекуле  $N_2H_4$  к этому есть предпосылки. Эта молекула содержит связь N-N, и эта одинарная связь в результате реакции станет тройной. Процесс, по-видимому, идет через стадию диимида HN=NH.

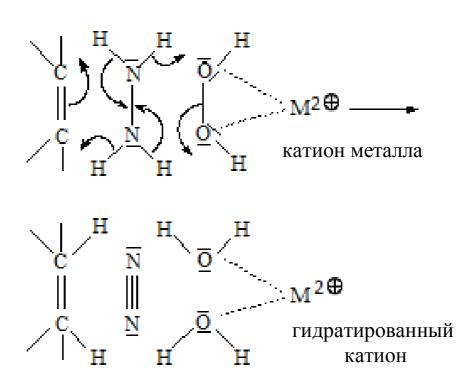
Примеры окисления гидразина в щелочной среде И нейтральной средах:

$$\begin{array}{c} & H_2O_2 & H_2O \\ KBrO_3 & KBr + H_2O \\ N_2H_4 \cdot H_2O & \\ K_2S_2O_8 + KOH \\ N_2H_4 \cdot H_2O & \\ KMnO_4 + H_2O & \\ I_2 & \\ KOH + MnO(OH)_2 \\ & \\ KOH + HI \end{array}$$

Окисление в кислой среде:

$$N_2H_5Cl + \begin{array}{c} Cl_2 \\ KBrO_3 \\ FeCl_3 \\ AgNO_3 \\ KMnO_4 + HCl \\ K_2Cr_2O_7 + HCl \end{array} \rightarrow \begin{array}{c} HCl \\ Br_2 + KCl \\ FeCl_2 + HCl \\ Ag + HNO_3 + HCl \\ KCl + MnCl_2 + H_2O \\ KCl + CrCl_3 + H_2O \end{array}$$

2б. Окислительные свойства нехарактерны. Проявляются в восстановителей. присутствии сильных Продуктами восстановления являются аммиак NH<sub>3</sub> в щелочной среде или соли аммония  $NH_4^+$  в кислой среде.


$$N_2H_4 \ N_2H_4 \cdot H_2O$$
 +  $N_2H_4 \cdot H_2O$  +  $N_2H_4 \cdot H_2O$  +  $N_3H_3 \cdot H_3$  +  $N_3H_3 \cdot$ 

$$N_2H_5Cl + \frac{Zn}{SnCl_2} + HCl \rightarrow NH_4Cl + \frac{ZnCl_2}{H_2[SnCl_6]}$$

2в. Внутримолекулярное окисление-восстановление и диспропорционирование протекает при термическом разложении:

$$3N_2H_4 \rightarrow 4NH_3 + N_2$$
 (400 °C, без катализатора)  $N_2H_4 \rightarrow N_2 + 2H_2$  (200 °C, кат. Pt)

2г. Превращение алкенов >C=C< в насыщенные углеводороды.



3. Реакции конденсации с соединениями, содержащими группы –N=O или >C=O:

$$H_2\overline{N} - \overline{N} {\stackrel{H}{<}} + \overline{\underline{O}} = \overline{N} - \overline{\underline{O}}H \longrightarrow H_2\overline{N} - \overline{N} = \overline{N} - \overline{\underline{O}}H + H_2O$$

и далее

$$H_2\overline{N} - \overline{N} = \overline{N} - \overline{O}H \longrightarrow H - \overline{N} = \overline{N} = \overline{N} \xrightarrow{\Theta} + H_2O$$

азидоводородная кислота

$$H_2\overline{N} - \overline{N} \Big\langle_H^H + \overline{\underline{O}} = C \Big\langle_{R'}^R \longrightarrow H_2\overline{N} - \overline{N} = C \Big\langle_{R'}^R$$

гидразон кетона

$$H_2\overline{N} - \overline{N} = C \left\langle \begin{array}{c} R \\ R' \end{array} \right\rangle \begin{array}{c} NaOH, \triangle \\ R' \end{array} + N_2$$
 алкан

## Применение.

- 1. Восстановитель в лабораторной практике.
- 2. Ракетное топливо.

## Соединения N<sup>-1</sup>

NH<sub>2</sub>OH гидроксиламин ион гидроксиламмония

NH<sub>3</sub>OH<sup>+</sup>

#### Получение.

1. Метод Тафеля. Электролиз раствора HNO<sub>3</sub> со свинцовым катодом.

$$2HNO_3 + 2H_2O \rightarrow 2NH_2OH + 3O_2.$$
 на катоде на аноде

Получающийся гидроксиламин тотчас связывается в соль – нитрат гидроксиламмония.

$$NH_2OH + HNO_3 \rightarrow (NH_3OH)NO_3$$

2. Метод Рашига. Восстановление NaNO2 сернистым газом. Для достижения необходимого соотношения числа атомов натрия и азота в продукте реакции в реакционную смесь вводят NaHSO<sub>3</sub>.

$$NaNO_2 + NaHSO_3 + SO_2 \rightarrow HO - N \setminus SO_2 - ONa$$
 $SO_2 - ONa$ 

Гидроксиламиндисульфонат натрия хорошо растворим в воде. Для отделения синтезированного производного гидроксиламина от избытка нитрита натрия и гидросульфита натрия в раствор ионы добиваются калия И осаждения гидроксиламидисульфоната калия, который далее разлагают горячей водой.

$$HON(SO_2ONa)_2 + KCl \rightarrow HON(SO_2OK)_2 \downarrow + NaCl$$
  
 $HON(SO_2OK)_2 + H_2O \rightarrow (HONH_3)_2SO_4 + K_2SO_4 + H_2SO_4$ 

3. Обменные реакции.

$$NH2OH+ HCl \rightarrow (NH3OH)Cl$$

$$(NH3OH)2SO4 + NaOH \rightarrow NH2OH + H2SO4$$

$$(NH3OH)NO3 + NaOH \rightarrow NH2OH + HNO3$$

4. Восстановление NO водородом в водном растворе HCl (катализатор – высокодисперсная платина).

$$2NO + 3H_2 \rightarrow 2NH_2OH$$
.

### Строение.

Структурные формулы:

$$H > \overline{N} - \overline{O}H$$
  $H = \overline{N} - \overline{O}H$ 

Гидроксиламин подобно  $NH_3$  проявляет основные свойства за счет электронной пары на атоме азота.

Гидроксиламин обладает электронными парами на двух атомах. Согласно преставлениям о «жестких» и молекула «МЯГКИХ» кислотах И основаниях, эта способна образовывать ковалентную СВЯЗЬ  $\mathbf{c}$ «ИЯГКИМИ» кислотамикомплексообразователями через атом азота и с «жесткими» кислотами-комплексообразователями через атомом кислорода.

#### Физические свойства.

Гидроксиламин  $NH_2OH$  — бесцветные кристаллы, пл. 32 °C, кип. 58 °C.

Соли  $NH_3OH^+$  – белые растворимые в воде твердые вещества.

#### Химические свойства.

- 1.Обменные реакции.
- 1а. Гидроксиламин  $NH_2OH$  обладает основными свойствами за счет неподеленной электронной пары на атоме азота. Является более слабым основанием, чем  $NH_3$  и  $N_2H_4$ . В реакциях с кислотами образует соли гидроксиламмония.

$$NH_2OH + HCl \rightarrow (NH_3OH)Cl.$$

1б. Соли гидроксиламмония  $NH_3OH^+$  разлагаются основаниями, в том числе аммиаком.

$$(NH_3OH)Cl + NaOH \rightarrow NH_2OH + NaCl + H_2O \rightarrow NH_4Cl$$

1в. Образование комплексов.

$$NH_2OH + PtCl_2 \rightarrow [Pt(NH_2OH)_4]Cl_2$$
  
 $LiClO_4 \rightarrow [Li(ONH_3)_3]ClO_4$ 

Ион  ${\rm Li}^+$  присоединяется к атому кислорода, ион  ${\rm Pt}^{2+}$  – к атому азота. См. Строение  ${\rm NH_2OH}$ .

- 2. Окислительно-восстановительные реакции.
- 2а. Окислительные свойства. Проявляются по отношению к сильным восстановителям и приводят к получению  $NH_3$  в щелочной среде или солей аммония  $NH_4^+$  в кислой.

$$\begin{array}{ccc} & H_2S & NH_3 + H_2O + S \\ NH_2OH + & Na[Sn(OH)_3] + NaOH & \rightarrow & Na_2[Sn(OH)_6] \\ & Zn + NaOH & NH_3 + Na_2[Zn(OH)_4] \\ & & HI & I_2 \\ & (NH_3OH)Cl + & SO_2 & \rightarrow NH_4Cl + H_2O + & H_2SO_4 \\ & Zn + HCl & ZnCl_2 \\ \end{array}$$

2б. Восстановительные свойства. Проявляются, как правило, в щелочной среде. Продуктом окисления является преимущественно азот  $N_2$ .

$$I_2 + KOH$$
 KI  
 $NH_2OH + Cu(OH)_2 \rightarrow N_2 + H_2O + Cu_2O$   
 $Fe(OH)_3$  Fe(OH)<sub>2</sub>

2в. Сильные окислители переводят  $NH_2OH$  в  $N_2O$ :

$$NH_2OH + {NaOCl (конц.) \over Ag_2O} \longrightarrow N_2O + {NaCl \over Ag} + H_2O$$
  $(NH_3OH)Cl + NaNO_2 \longrightarrow N_2O + NaCl + 2H_2O.$ 

3. Реакции конденсации с соединениями, содержащими группы -N=O или >C=O.

$$H\overline{\underline{O}} - \overline{\overline{N}} \stackrel{H}{=} \overline{N} = \overline{\overline{N}} - \overline{\overline{O}}H \longrightarrow H\overline{\underline{O}} - \overline{\overline{N}} = \overline{\overline{N}} - \overline{\underline{O}}H + H_2O$$
 азотноватистая кислота  $H\overline{\underline{O}} - \overline{\overline{N}} = \overline{\overline{N}} - \overline{\underline{O}}H \longrightarrow N_2O + H_2O$ 

$$H\overline{\underline{O}} \longrightarrow \overline{N} \stackrel{\Theta}{\Big|} \longrightarrow \overline{N} = \overline{N} \longrightarrow \overline{\underline{O}} \stackrel{\Theta}{\Big|} Na^{\oplus} + NaOH \longrightarrow$$

$$\longrightarrow Na^{\oplus} \stackrel{\Theta}{\Big|} \overline{\underline{O}} \longrightarrow \overline{N} = \overline{N} \longrightarrow \overline{\underline{O}} \stackrel{\Theta}{\Big|} Na^{\oplus} + 2H_2O$$
гипонитрит натрия

$$H\overline{\underline{O}} - \overline{N} \Big\backslash_{H}^{H} + \overline{\underline{O}} = C \Big\backslash_{R'}^{R} \longrightarrow H\overline{\underline{O}} - \overline{N} = C \Big\backslash_{R'}^{R} + H_{2}O$$

$$H\overline{\underline{O}} - \overline{N} \Big\backslash_{H}^{H} + \overline{\underline{O}} = \mathbb{N} \Big\backslash_{\underline{\underline{O}}|\Theta}^{OH} \longrightarrow H\overline{\underline{O}} - \overline{N} = \mathbb{N} \Big\backslash_{\underline{\underline{O}}|\Theta}^{OH} + H_{2}O$$

$$H\overline{\underline{O}} - \overline{N} = \mathbb{N} \Big\backslash_{\underline{\underline{O}}|\Theta}^{OH} \longrightarrow N_{2}O + 1/2O_{2} + H_{2}O$$

В последней реакции выделяется атомарный кислород, который превращает азотноватую кислоту  $H_2N_2O_3$  в азотистую:

$$H_2N_2O_3 + O \rightarrow 2HNO_2$$
,

так что в окончательном виде уравнение реакции можно записать в виде

$$2H_2N_2O_3 \rightarrow N_2O + 2HNO_2 + H_2O.$$

## Применение.

 $NH_2OH$  — восстановитель в лабораторной практике и фотографии.

# Соединения азота $N^{+2}$

#### Оксид азота NO

### Получение.

1. Восстановление  $HNO_3$  восстановителями средней силы в растворе:

$$rac{Cu}{Hg + H_2SO_4} + HNO_3$$
 раствор  $ightarrow rac{Cu(NO_3)_2}{Hg_2SO_4} + NO + H_2O$ 

2. Восстановление соединений  $N^{+3}$  в водном растворе.

$$NaNO_2 + HCl + \begin{array}{c} FeCl_2 \\ KI \end{array} \rightarrow NO + NaCl + \begin{array}{c} FeCl_3 \\ I_2 + KCl \end{array}$$

3. Взаимодействие простых веществ в электрической дуге.

$$N_2 + O_2 \rightarrow 2NO$$
 (выше 2000 °C).

4. Каталитическое окисление NH<sub>3</sub>. Промышленный способ получения. Первая стадия производства азотной кислоты из аммиака.

$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$$
 (кат. Pt + Rh, 750 °C)

## Строение.

Структурная формула

$$\cdot \overline{N} = \overline{O}$$

Парамагнитная полярная молекула. Способна образовывать димер в конденсированной фазе за счет обобществления неспаренных электронов.

$$\overline{\underline{O}} = \overline{N}$$
  $\underline{\underline{O}}$   $\underline{\underline{O}}$   $\underline{\underline{O}}$   $\underline{\underline{N}} - \overline{N} \searrow \underline{\underline{O}}$  транс- конформация

Димер представляет собой плоскую нелинейную молекулу, цисоидная и трансоидная конформации которой подобны цис- и транс-изомерам бутадиена-1,3.

#### Физические свойства.

Бесцветный газ, пл. -163 °C, кип. -152 °C.

#### Химические свойства.

1. Обменные реакции нехарактерны. К ним можно отнести процесс димеризации в жидкой фазе и замещение СО в карбонилах.

$$Fe(CO)_5 + 4NO \rightarrow Fe(NO)_4 + 5CO$$
 (40 °C).

- 2. Окислительно-восстановительные превращения
- 2а. Действие сильных окислителей приводит к соединениям азота  $N^{+5}$  (в газовой фазе или растворе).

$$\begin{split} 2NO+3O_3 \ (\text{ra3}) &\rightarrow N_2O_5 + 3O_2, \\ K_2Cr_2O_7 + H_2SO_4 & K_2SO_4 + Cr_2(SO_4)_3 \\ NO+ & KMnO_4 + H_2SO_4 \rightarrow HNO_3 + H_2O + K_2SO_4 + MnSO_4 \\ & HOCl & Cl_2 \end{split}$$

2б. Окисление кислородом или концентрированной  $HNO_3$  вначале приводит к соединениям  $N^{+4}$ , которые в избытке NO превращаются в производные  $N^{+3}$ .

$$NO + O_2 \rightarrow NO_2$$
,  
 $NO_2 + NO \rightarrow N_2O_3$ .

2в. Окисление до соединений  $N^{+3}$  происходит при действии окислителей средней силы.

$$NO_2 + NO oup N_2O_3,$$
 $NO + NO_2 + HClO_4$  конц  $Oldsymbol{H} oup H_2SO_4$  конц  $Oldsymbol{H}$ 

2г. Восстановление до нитрозидов (производных  $N^{+1}$ , содержащих ион  $NO^-$ ) протекает при действии активных металлов в жидком аммиаке.

$$NO + \frac{Na}{Ba} \rightarrow \frac{NaNO}{Ba(NO)_2}$$

При действии воды нитрозиды образуют  $N_2O$  и щелочь:

$$2NaNO + H_2O \rightarrow N_2O + 2NaOH$$
.

Нитрозид-ионы могут быть лигандами в комплексных соединениях. Они координируются, например, ионами железа. Нитрозидный смешаннолигандный комплекс получается по реакции ионов  $\mathrm{Fe}^{2+}$  в растворе с газообразным  $\mathrm{NO}$ .

$$Fe(H_2O)_6^{2+} + NO \rightarrow [Fe^{+3}(N^{+1}O)(H_2O)_5]^{2+} + H_2O.$$

2д. Восстановление до  $N_2$ О происходит в растворе действием сернистого ангидрида или дитионитов:

$$NO + {SO_2 + H_2O \over Na_2S_2O_4 + NaOH} \rightarrow N_2O + {H_2SO_4 \over Na_2SO_3 + H_2O}$$

2е. Восстановление до азота  $N_2$  протекает преимущественно в газовой фазе при действии простых веществ и ряда других восстановителей:

2ж. Восстановление до  $NH_3OH^+$  в кислых растворах солями металлов в низшей степени окисления. Структурный мотив в виде химической связи N-O сохраняется. Молекула NO дополняется атомами водорода. Аналогом этого процесса является превращение

молекулярного азота  $N_2$  в гидразин  $N_2H_4$ . См. химические свойства  $N_2$ .

NO + 
$$\frac{CrCl_2}{SnCl_2}$$
 + HCl  $\rightarrow$  (NH<sub>3</sub>OH)Cl +  $\frac{CrCl_3}{H_2SnCl_6}$   
2NO + 3H<sub>2</sub> + 2HCl  $\rightarrow$  2(NH<sub>3</sub>OH)Cl (kat. Pt)

23. Восстановление до  $NH_3$  и  $NH_4^+$  происходит при действии металлов в растворах щелочей или кислот соответственно:

$$NO + Zn + \begin{array}{c} NaOH \\ HCl \end{array} \rightarrow \begin{array}{c} NH_3 \\ NH_4Cl \end{array} + \begin{array}{c} Na_2[Zn(OH)_4] \\ ZnCl_2 + H_2O \end{array}$$

2и. Внутримолекулярное окисление-восстановление. По этому пути протекает термический распад на простые вещества.

2NO → 
$$N_2 + O_2$$
 (800 °C, кат. BaO)

2к. Диспропорционирование в растворах концентрированных щелочей дает  $N_2$  или  $N_2$ O в зависимости от условий проведения реакции.

$$NO + NaOH \rightarrow \frac{N_2}{N_2O} + NaNO_2 + H_2O$$
 (расплав NaOH) (твердый NaOH, 20 °C)

2л. Диспропорционирование в газовой фазе при повышенном давлении. Движущей силой реакции согласно принципу Ле Шателье является уменьшение числа частиц в газовой фазе.

$$3NO \rightarrow N_2O + NO_2$$
.

## Применение.

Промежуточный продукт в производстве HNO<sub>3</sub>.

## Соединения азота $N^{+3}$

Оксид азота  $N_2O_3 \leftrightarrow NO + NO_2$ Азотистая кислота  $HNO_2$  и нитриты  $NO_2^-$ Производные нитрозила  $NO^+$ 

#### Получение.

1. Оксид  $N_2O_3$  получается охлаждением смеси  $NO + NO_2$  эквивимолярного состава. Такая смесь получается по реакциям:

$$\begin{array}{c} \text{Cu} + \text{HNO}_3 \text{ средней конц.} & \text{Cu(NO}_3)_2 \\ \text{As}_2\text{O}_3 + \text{HNO}_3 \text{ (50 \%)} & \rightarrow \text{NO} + \text{NO}_2 + \begin{array}{c} \text{HAsO}_3 \\ \text{Na}_2\text{SO}_4 \end{array} + \text{H}_2\text{O} \\ (\text{C}_6\text{H}_{10}\text{O}_5)_n \text{ крахмал} + \text{HNO}_3 \end{array} \qquad \qquad \begin{array}{c} \text{CO}_2 \end{array}$$

2. Азотистая кислота и нитриты получаются по обменным реакциям:

$$NaOH NaNO2 + H2O NO2 + NO + Na2CO3 \rightarrow NaNO2 + H2O + CO2 H2O HNO2 NOCl + H2O \rightarrow HCl + HNO2.$$

3. Нитриты образуются термическим разложением нитратов или их восстановлением малоактивными металлами в расплаве.

$$2NaNO_3 \rightarrow 2NaNO_2 + O_2$$
  
 $NaNO_3 + Pb \rightarrow NaNO_2 + PbO$ 

4. Производные нитрозила получают окислением NO, диспропорционированием жидкого  $N_2O_4$ . Они образуются в смеси концентрированных азотной и соляной кислот.

$$Cl_2$$
 NOCl NO +  $Br_2 \rightarrow NOBr$  O2 +  $H_2SO_4$  NOHSO4 NOHSO4 +  $N_2O_4$ (жидкий) +  $KBr \rightarrow KNO_3 + NOBr$ , HNO3 +  $3HCl \rightarrow NOCl + Cl_2 + 2H_2O$ .

## Строение.

Структурная формула N<sub>2</sub>O<sub>3</sub>

$$\overline{Q} = \overline{N} \setminus \underset{|Q|}{\oplus N} \overline{Q}$$

Обладает длинной связью N-N, по которой идет распад на  $NO^+$  и  $NO_2^-$ , так что  $N_2O_3$  реагирует подобно нитриту нитрозила.

Нитрит-ион  $NO_2^-$  имеет угловую форму из-за неподеленной электронной пары на атоме азота.

$$\overline{0} - \overline{N} = \overline{0}$$

Существует две возможности присоединения нитрит-иона к катионам. К «мягким» по Пирсону кислотам (например,  $Ag^+$ ) он присоединяется через атом азота, а к «жестким» кислотам (например,  $Na^+$ ) — через атом кислорода.

Катион Н<sup>+</sup> присоединяется двумя способами, присоединение к атому кислорода преобладает (проявляется «жесткая» природа катиона водорода). Два изомера азотистой кислоты находятся в равновесии друг с другом (таутомерия азотистой кислоты).

$$H - \overline{Q} - \overline{N} = \overline{Q}$$
 —  $H - N = \overline{Q}$  Объясняет кислотные свойства  $HNO_2$  объясняет восстановительные свойства  $HNO_2$ 

Катион нитрозила NO<sup>+</sup> достаточно устойчив. Его строение передают две структурные формулы.

$$\oplus \overline{N} = \overline{O} \longleftrightarrow \overline{N} \equiv \overline{O} \oplus$$

Ковалентные производные нитрозила (нитрозилгалогениды, нитрозилсерная и азотистая кислоты) содержат в своей структуре нелинейный (угловой) фрагмент:

$$\sqrt{N} = \overline{0}$$

### Физические свойства.

 $N_2O_3$  – синяя жидкость, разлается при 5  $^{\circ}C$  с отщеплением NO.

 $HNO_2$  – слабая кислота, существует только в растворе.

 $NaNO_2$ ,  $KNO_2$  – твердые, хорошо растворимые в воде вещества.

NOX – летучие вещества молекулярной природы.

#### Химические свойства.

- 1. Обменные реакции.
- 1а.  $N_2O_3$  проявляет свойства кислотного оксида.

$$\begin{array}{ccc} & H_2O & HNO_2 \\ N_2O_3 + NaOH & \rightarrow & NaNO_2 + H_2O \\ Na_2CO_3 & NaNO_2 + CO_2 \end{array}$$

1б. Ковалентные производные нитрозила проявляют свойства галогенангидридов или смешанных ангидридов кислот:

$$NOCl + \begin{array}{c} H_2O & HNO_2 + HCl \\ NH_3 \ pactbop & NH_4NO_2 + NH_4Cl \\ NaOH & NaNO_2 + NaCl + H_2O \\ Na_2CO_3 & NaNO_2 + NaCl + CO_2 \end{array}$$

Взаимодействие с безводными ковалентными галогенидами приводит к комплексным галогенидам.

NOCl + AlCl<sub>3</sub> 
$$\rightarrow$$
 [NO<sup>+</sup>][AlCl<sub>4</sub><sup>-</sup>],  
NOF +  $BF_3$   $\rightarrow$  [NO<sup>+</sup>][BF<sub>4</sub><sup>-</sup>]  
[NO<sup>+</sup>][ClF<sub>4</sub><sup>-</sup>]

Гидролиз производных нитрозила приводит к смеси кислот, включающей азотистую кислоту:

$$\begin{array}{c} NOHSO_4 \\ NOClO_4 \end{array} + H_2O \rightarrow HNO_2 + \begin{array}{c} H_2SO_4 \\ HClO_4 \end{array}$$

1в. Азотистая кислота проявляет все свойства кислот:

$$HNO_2 + \frac{NaOH}{Na_2CO_3} \rightarrow NaNO_2 + \frac{H_2O}{CO_2}$$

1г. Нитриты проявляют все свойства солей.

$$2\text{NaNO}_2 + \text{H}_2\text{SO}_4 \rightarrow 2\text{HNO}_2 + \text{Na}_2\text{SO}_4$$
 (в растворе).

1д. Образование нитритных комплексов. Осадки смешанных (комплексных) нитритов выпадают при смешивании концентрированных водных растворов солей.

$$3CsNO_2 + Bi(NO_2)_3 \rightarrow Cs_3[Bi(NO_2)_6] \downarrow$$
,

- 2. Окислительно-восстановительные реакции.
- 2а. Окисление до  $N^{+5}$  характерно для всех представителей соединений азота  $N^{+3}$ .

Окисление в газовой фазе:

$$\begin{array}{ccc} N_2O_3 & & N_2O_5 \\ NOCl & +O_3 \rightarrow & NO_2Cl & +O_2 \\ NOF & & NO_2F \end{array}$$

$$NOF + F_2 \rightarrow NOF_3$$
.

Продукт этой реакции представляет собой фторангидрид ортоазотной кислоты. Это вещество медленно растворяется в воде и обладает низкой реакционной способностью.

Окисление в водном растворе.

$$HNO_2 + \frac{KMnO_4}{K_2Cr_2O_7} + H_2SO_4 \rightarrow HNO_3 + \frac{MnSO_4}{Cr_2(SO_4)_3} + K_2SO_4 + H_2O_4 + H_2O_$$

$$\begin{array}{cccc} & NaOCl & NaCl \\ & Cl_2 + H_2O & NaCl + HCl \\ NaNO_2 + & O_3 & \rightarrow NaNO_3 + & O_2 \\ & H_2O_2 & H_2O \\ & F_2 + NaOH & NaF \end{array}$$

б. Окисление  $N_2O_3$  кислородом заканчивается образованием  $NO_2$  и его димера  $N_2O_4$ :

$$2N_2O_3 + O_2 \rightarrow 2N_2O_4.$$

2в. Восстановление до NO протекает обычно в кислой среде. Ковалентные производные нитрозила восстанавливаются до NO в газовой фазе.

$$NaNO_2 + rac{NaI}{FeCl_2} + HCl o NO + rac{I_2 + NaCl}{FeCl_3} + H_2O$$
  $2HNO_2 + 2HI o 2NO + I_2 + 2H_2O$ ,  $HNO_2$  (разб)  $+ Ba o Ba(NO_2)_2 + NO + H_2O$ .  $NOCl + rac{Au}{Pt} o rac{AuCl_3}{PtCl_4} + NO$  (в составе «царской водки»)  $NOCl + rac{Fe}{Si} o rac{FeCl_3}{SiCl_4} + NO$  (в газовой фазе)

г. Восстановление до  $Na_4N_2O_4$  (натриевая соль гидроазотистой кислоты – продукта замещения атомов водорода в гидразине на гидроксильные группы) протекает при действии металлического натрия на нитрит натрия в жидком аммиаке.

$$2NaNO_2 + 2Na \rightarrow Na_4N_2O_4$$

д. Восстановление до  $H_2N_2O_2$  амальгамой натрия:

$$NaNO_2 + Na/Hg + {H_2O \over AgNO_3} 
ightarrow {Na_2N_2O_2 + NaOH \over Ag_2N_2O_2}$$
 (в этаноле)

© 2008 – 2012 А.А.Сибиркин

2е. Восстановление до  $N_2$  характерно для нитратов и  $N_2O_3$ . Это — характерное направление восстановления при повышенной температуре. В водном растворе этот продукт восстановления образуется при действии аммиака, амидов неорганических кислот и солей аммония.

$$N_2O_3 + 3Cu \rightarrow N_2 + 3CuO$$
 (600 °C)  
 $2NaNO_2 + 6Na \rightarrow 4Na_2O + N_2$  (400 °C)  
 $NaNO_2 + NH_4Cl \rightarrow N_2 + NaCl + 2H_2O$  (100 °C, водный раствор)  
 $N_2O_3 + 2NH_3 \rightarrow NONH_2 + NH_4NO_2$  (в жидком аммиаке)

Образование нитрозоамида  $NONH_2$  по последней из приведенных реакций объясняется с позиций теории сольвосистем. Диссоциация реагентов приводит к получению катионов и анионов, между которыми протекает реакция ионного обмена.

$$\begin{split} &N_{2}O_{3} \rightarrow NO^{^{+}} + NO_{2}^{^{-}}, \\ &2NH_{3} \rightarrow NH_{4}^{^{+}} + NH_{2}^{^{-}}, \\ &NO^{^{+}} + NH_{2}^{^{-}} \rightarrow NONH_{2}, \\ &NH_{4}^{^{+}} + NO_{2}^{^{-}} \rightarrow NH_{4}NO_{2}. \end{split}$$

При испарении аммиака и нитрозоамид, и нитрит аммония разлагаются с образованием азота и воды.

$$\frac{NONH_2}{NH_4NO_2} \rightarrow N_2 + H_2O$$

2ж. Восстановление до  $NH_3$  и  $NH_4^+$  происходит под действием металлов в растворах кислот или щелочей:

$$HNO_2 + 3Zn + 7HCl \rightarrow NH_4Cl + 3ZnCl_2 + 2H_2O,$$
  
 $NaNO_2 + 3Zn + 5NaOH + 5H_2O \rightarrow NH_3 + 3Na_2[Zn(OH)_4].$ 

23. Внутримолекулярное окисление-восстановление проявляется при термическом разложении солей и проходит по двум направлениям. Первое из них, характерное для нитритов щелочных металлов, сопровождается образованием простых веществ азота и кислорода, а также оксида металла. Второе направление относится к процессам термического распада

нитритов малоактивных металлов, оксиды которых неустойчивы. В этих реакциях образуется диоксид азота.

$$NaNO_2 \rightarrow Na_2O + N_2 + O_2 (800 \text{ }^{\circ}C)$$
  
 $AgNO_2 \rightarrow Ag + NO_2$ 

2и. Диспропорционирование. Протекает при термическом разложении  $N_2O_3$ ,  $HNO_2$  и нитритов большинства металлов средней активности. Образуется эквимолярная смесь оксидов азота.

$$N_2O_3$$
  
 $HNO_2 \rightarrow NO + NO_2 + H_2O$   
 $Ca(NO_2)_2$  CaO

3. Реакции конденсации  $HNO_2$  с соединениями, содержащими  $NH_2$ -группу.

## Применение.

 $NaNO_2$  — диазотирование в органическом синтезе, в том числе в синтезе органических красителей, производство вареной колбасы.

### Соединения азота (+4)

Диоксид азота  $NO_2$  и его димер  $N_2O_4$ 

### Получение.

1. Окисление оксидов азота NO и  $N_2O_3$  кислородом.

$$\frac{\text{NO}}{\text{N}_2\text{O}_3} + \text{O}_2 \rightarrow \text{NO}_2$$

- 2. Восстановление соединений  $N^{+5}$ .
- 2а. Восстановление азотной кислоты слабым восстановителем.

$$\frac{Cu}{S} + HNO_3 \rightarrow \frac{Cu(NO_3)_2}{H_2SO_4} + NO_2 + H_2O$$

2б. Восстановление нитратов металлов средней и малой активности при термическом разложении:

$$\frac{Pb(NO_3)_2}{AgNO_3} \rightarrow \frac{PbO}{Ag} + NO_2 + O_2$$

## Строение.

Структурная формула диоксида азота:

$$\Theta \bigcap_{|\underline{O}|} \overset{\dot{N}}{\Theta} \underbrace{\overline{O}} \longrightarrow \underline{\overline{O}} / \overset{\dot{N}}{\Theta} \underbrace{\overline{O}} \Theta$$

Молекула NO<sub>2</sub> представляет собой парамагнитную частицу угловой формы. Атомы кислорода равноценны из-за сопряжения.

Строение димера диоксида азота отражается приведенными ниже формулами. Превращение, указанное на схеме, происходит при сверхнизких температурах (4 K).

Вторая формула объясняет происхождение продуктов диссоциации  $N_2O_4$  в виде жидкости или раствора в неводных растворителях:

$$N_2O_4 \leftrightarrow NO^+ + NO_3^-$$
.

#### Физические свойства.

Диоксид азота  $NO_2$  — бурая жидкость, пл. —11 °C, кип. 21 °C. В жидкой и твердой фазах образует димер. Димер сохраняется в газовой фазе при нагревании до 140 °C.

#### Химические свойства.

1. Обменные реакции нехарактерны. К ним относятся процессы образования и распада димера и самоионизация.

$$2NO_2 \leftrightarrow N_2O_4 \\ N_2O_4 \leftrightarrow NO^+ + NO_3^-.$$

- 2. Окислительно-восстановительные превращения. Характерный класс реакций.
- 2a. Восстановление до NO при термическом распаде и действии мягких восстановителей.

$$2NO_2 \rightarrow 2NO + O_2$$
 (600 °C)  
 $NO_2 + H_3PO_3 \rightarrow H_3PO_4 + NO$  (50 °C)  
 $NO_2 + SO_2 + H_2O \rightarrow H_2SO_4 + NO$  (80 °C)

2б. Восстановление до  $N_2$  в газовой фазе при повышенной температуре.

2в. Восстановление до  $N^{+3}$  на холоду щелочными металлами, карбонилами, газообразным HCl:

$$\begin{array}{cccc} & K & KNO_2 & (20\ ^{\circ}C) \\ NO_2 + & Ni(CO)_4 & \rightarrow & Ni(NO_2)_2 + CO & (30\ ^{\circ}C) \\ & HCl & NOCl + Cl_2 + H_2O & \end{array} \label{eq:KNO2}$$

2г. Диспропорционирование на соединения азота  $N^{+3}$  и  $N^{+5}$ . Протекает в водном растворе на холоду.

$$NO_2 + H_2O \rightarrow NaOH \rightarrow NaNO_2 + NaNO_3 + H_2O$$
  $2NO_2$  жидкий  $N_2O_4 + KBr \rightarrow NOBr + KNO_3$ 

2д. Диспропорционирование на  $N^{+2}$  и  $N^{+5}$  протекает в горячих водных растворах или действием веществ, способных восстанавливать  $NO^+$  (продукт самоионизации  $N_2O_4$ ) до NO.

$$3NO_2 + H_2O \rightarrow NO + 2HNO_3$$
 (80 °C)  $2NO_2$  (жидкий) + Na  $\rightarrow$  NO + NaNO<sub>3</sub> (20 °C)  $NO_2$  (в этилацетате)  $\frac{Bi}{Cu} \rightarrow NO + \frac{Cu(NO_3)_2}{Bi(NO_3)_2}$  (80 – 100 °C)

2е. Восстановление до  $N^{-3}$  сильными восстановителями.

$$2NO_2 + 7H_2 \rightarrow 2NH_3 + 4H_2O$$
 (кат. Pt)  
 $NO_2 + Zn + \frac{HCl}{NaOH} \rightarrow \frac{NH_4Cl}{NH_3} + \frac{ZnCl_2 + H_2O}{Na_2[Zn(OH)_4]}$ 

Побочным продуктом восстановления цинком в кислой среде является соль гидроксиламмония.

$$2NO_2 + 5Zn + 12HCl \rightarrow 2(NH_3OH)Cl + 5ZnCl_2 + 2H_2O.$$

2ж. Окисление до  $N^{+5}$ . Эти соединения являются единственно возможными продуктами окисления.

$$NO_{2} + \begin{array}{c} O_{3} & N_{2}O_{5} + O_{2} \\ Cl_{2}O & (NO_{2})ClO + Cl_{2} \\ F_{2} & NO_{2}F \\ O_{2} + H_{2}O & HNO_{3} & (80 \ ^{\circ}C) \\ O_{2} + NaOH & NaNO_{3} & (80 \ ^{\circ}C) \\ H_{5}IO_{6} & HNO_{3} + HIO_{3} \end{array}$$

# Применение.

- 1. Окислитель ракетного топлива  $CH_3NHNH_2$  и  $(CH_3)_2NNH_2$ .
- 2. Неводный ионизирующий растворитель.

## Соединения азота N<sup>+5</sup>

Оксид азота  $N_2O_5$ Азотная кислота  $HNO_3$  и нитраты  $NO_3^-$ Производные катиона нитрония  $NO_2^+$ 

#### Получение.

1. Окисление соединений азота  $N^{+4}$ . См. также Химические свойства соединений  $N^{+4}$ .

$$NO_2 + \begin{array}{c} O_2 + H_2O & HNO_3 \\ O_3 & \rightarrow & N_2O_5 \\ F_2 & NO_2F \\ H_5IO_6 & HNO_3 + HIO_3 \end{array}$$

2. Диспропорционирование соединений азота  $N^{+4}$ . См. также Химические свойства соединений  $N^{+4}$ .

$$NO_2 + H_2O \rightarrow NaOO_2 + NaNO_3 + NaNO_3$$

3. Окисление соединений азота  $N^{+3}$ .

$$NOF + O_3 \rightarrow NO_2F + O_2$$
.

4. Обменные реакции.

### Строение.

Структурные формулы азотной кислоты, нитрат-иона и катиона нитрония:

$$H-\bar{Q}-N = \bar{Q} \qquad \qquad \qquad \qquad \bar{Q} \qquad \qquad \bar{Q} = \bar{Q} \qquad \qquad \bar{Q} = \bar{Q}$$

В нитрат-ионе все атомы кислорода равноценны. Атом азота находится в состоянии  $sp^2$ -гибридизации. Нитрат-ион плоский. Ион нитрония имеет линейную форму.

#### Физические свойства.

Оксид азота  $N_2O_5$  – твердое вещество, пл. 41 °C с разложением.

Азотная кислота  $HNO_3$  — жидкость, кип. 87 °C. Образует азеотроп, содержащий 68 %  $HNO_3$  (кип. 120 °C), называемый концентрированной азотной кислотой.

Нитраты – твердые вещества, растворяются в воде.

Диоксофторид азота  $NO_2F$  – газ, кип. –72 °C.

Диоксохлорид азота  $NO_2Cl$  – газ, кип. –14 °C.

Оксотрифторид азота  $NOF_3$  – газ, кип. –85 °C.

#### Химические свойства.

1. Обменные реакции. Являются веществами выраженной кислотной природы. Примеры – см. получение соединений  $N^{+5}$ , п. 4.

Азотная кислота в растворе проявляет все свойства кислот.

Безводная азотная кислота вытесняет слабые летучие кислоты из солей. В присутствии более сильных кислот реагирует по основному типу, отщепляя гидроксил и превращаясь в производные нитрония.

$$egin{array}{lll} \mbox{NaF твердый} & \mbox{NaNO}_3 + \mbox{HF} \\ \mbox{HNO}_3 + & \mbox{H}_2 \mbox{SO}_4 \mbox{ конц} \\ \mbox{безводная} & \mbox{H}_2 \mbox{S}_2 \mbox{O}_7 \mbox{ олеум} \\ \mbox{HSO}_3 \mbox{Cl} & \mbox{NO}_2 \mbox{Cl} + \mbox{H}_2 \mbox{SO}_4 \\ \mbox{NO}_2 \mbox{NO}_2 \mbox{Cl} + \mbox{H}_2 \mbox{SO}_4 \\ \mbox{NO}_2 \mbox{Cl} + \mbox{H}_2 \mbox{SO}_4 \\ \mbox{NO}_2 \mbox{Cl} + \mbox{H}_2 \mbox{SO}_4 \\ \mbox{NO}_2 \mbox{Cl} + \mbox{NO}_2 \mbox{Cl} + \mbox{NO}_2 \mbox{Cl} + \mbox{NO}_2 \mbox{Cl} \\ \mbox{NO}_2 \mbox{Cl} + \mbox{NO}_2 \mbox{Cl} + \mbox{NO}_2 \mbox{Cl} \\ \mbox{NO}_2 \mbox{Cl} + \mbox{NO}_2 \mbox{Cl} + \mbox{NO}_2 \mbox{Cl} \\ \mbox{NO}_2 \$$

Соединения нитроила (нитрония) проявляют кислотную природу и разлагаются водой с образованием смеси кислот. Растворы щелочей переводят смесь кислот в смесь солей этих кислот.

$$NO_2Cl + H_2O \rightarrow NaOH \rightarrow NaNO_3 + NaCl$$

- 2. Окислительно-восстановительные реакции. Характерная группа свойств.
- 2а. Восстановительные свойства невозможны за счет азота  $N^{+5}$ , но возможны за счет  $O^{-2}$ .

$$HNO_3+F_2 \rightarrow NO_2OF+HF$$
 конц.  $HNO_3$   $4AgNO_3+2Cl_2 \rightarrow 2N_2O_5+4AgCl+O_2$  твердый  $AgNO_3$ 

2б. Внутримолекулярное окисление восстановление протекает при термическом разложении соединений  $N^{+5}$ .

Замечание 1. Разложение нитрата аммония часто некритично относят к процессам внутримолекулярного окислениявосстановления, видимо, полагая, что  $NH_4NO_3$  – это молекула, а не формульная единица. Это положение некорректно. окислителя  $N^{+5}$  находится в составе нитрат-иона, атом восстановителя  $N^{-3}$  – в составе иона аммония. Эти ионы следует рассматривать как отдельные различные молекулы в современном толковании понятия молекулы как частицы, состоящей нескольких атомных ядер и определенного числа электронов. Нитрат аммония в свете этого представляется как ионное соединение, состоящее из молекулярных ионов. Окислительновосстановительное взаимодействие между ионами аммония и нитрат-ионами, строго говоря, является межмолекулярным.

Замечание 2. В процессе разложения нитратов ряда металлов (например,  $Mn(NO_3)_2$ ,  $Sn(NO_3)_2$ ,  $Fe(NO_3)_2$ ) внутримолекулярное окислительно-восстановительное превращение нитрат-иона процессом дополняется межмолекулярным окисления ионов результате чего металлов, степень В окисления металлов увеличивается.

3амечание 3. Кристаллогидраты нитратов обычно вначале теряют  $HNO_3$  вследствие гидролиза, превращаясь в основные соли. При дальнейшем нагревании основные соли образуют продукты термического распада, характерные для разложения безводных средних солей (оксиды металлов, диоксид азота, кислород).

$$Bi(NO_3)_3$$
•  $5H_2O \rightarrow BiONO_3 + 2HNO_3 + 4H_2O$ ,  
 $4BiONO_3 \rightarrow 2Bi_2O_3 + 4NO_2 + O_2$ .

2в. Восстановление нитратов до нитритов. Протекает в условиях термического разложения нитратов активных металлов (внутримолекулярный процесс, см. 2б.) и их восстановлении в щелочных расплавах.

$$KNO_3 + Cr_2O_3 + KOH \atop K_2CO_3 \rightarrow KNO_2 + K_2CrO_4 + CO_2$$

2г. Восстановление  $HNO_3$  до  $NO_2$  протекает при действии слабых восстановителей на концентрированную  $HNO_3$ .

2д. Восстановление  $HNO_3$  до NO происходит при действии восстановителей средней силы на раствор  $HNO_3$  (концентрация  $HNO_3$  в растворе от 3-5% до 20-30%). Примесью к NO в реакциях с активными металлами часто бывает  $N_2$ .

Также до NO восстанавливаются смеси  $HNO_3$  с HCl («царская водка») или  $HNO_3$  с HF независимо от концентрации  $HNO_3$ .

$$\begin{array}{ccc} HNO_3 + HCl + \begin{array}{c} Au \\ Pt \end{array} & \rightarrow \begin{array}{c} HAuCl_4 \\ H_2PtCl_6 \end{array} + NO + H_2O \\ \\ HNO_3 + HF + \begin{array}{c} W \\ Nb \end{array} & \rightarrow \begin{array}{c} H_2[WO_2F_4] \\ H_2NbF_7 \\ Zr \end{array} & + NO + H_2O \end{array}$$

Процесс протекает через стадию образования нитрозилхлорида, который распадается с отщеплением атомарного хлора, обладающего более высокой окислительной активностью, чем молекулярный хлор. Освобождающийся монооксид азота способствует превращению молекул хлора в атомы.

$$HNO_3 + 3HCl \rightarrow NOCl + Cl_2 + 2H_2O,$$
  
 $NOCl \rightarrow NO + Cl,$   
 $NO + Cl_2 \rightarrow NOCl + Cl.$ 

- 2е. Восстановление до  $N_2O_3$  происходит в особых случаях, где подобрана концентрация  $HNO_3$  и сила восстановителей(Cu,  $As_2O_3$ , крахмал) таким образом, чтобы образовывалась эквимолярная смесь NO и  $NO_2$ . См. получение  $N_2O_3$ .
- 2ж. Восстановление  $HNO_3$  до солей гидроксиламмония  $NH_3OH^+$  при электролизе  $HNO_3$  на ртутном или свинцовом катоде Cм. получение  $NH_2OH$  и  $NH_3OH^+$ .
- 23. Восстановление  $HNO_3$  до солей аммония  $NH_4^+$  происходит при действии активных металлов на очень разбавленную азотную кислоту (менее 3-5 %  $HNO_3$ ). Побочно выделяется  $H_2$ , иногда с выходом, сравнимым с  $NH_4NO_3$ .

$$\begin{array}{ccc} Mg & Mg(NO_3)_2 \\ Zn & + HNO_3 \rightarrow & Zn(NO_3)_2 & + NH_4NO_3 + H_2O \\ Sn & Sn(NO_3)_2 \end{array}$$

2и. Восстановление  $HNO_3$  до  $N_2O$  происходит при действии активных металлов на  $HNO_3$  средних и высоких концентраций:

$$4Mg + 10HNO_3 \rightarrow 4Mg(NO_3)_2 + N_2O + 5H_2O$$
.

Процесс идет через стадию образования  $NH_4NO_3$ , который разлагается в кипящем растворе. Процесс протекает бурно, иногда в ходе реакции происходит взрыв. Побочным продуктом восстановления азотной кислоты является  $N_2$ . Образование азота объясняется восстановлением  $N_2O$  металлом, который превращается в оксид и далее реагирует с  $HNO_3$ , образуя нитрат.

3. Реакции азотной кислоты с органическими соединениями. 3а. Нитрование алканов (15 % раствор азотной кислоты,  $110\ ^{\circ}\mathrm{C}$ ).

$$(CH_3)_3CH + HNO_3 \rightarrow (CH_3)_3CNO_2 + H_2O.$$
© 2008 – 2012 А.А.Сибиркин

3б. Нитрование ароматических соединений (обычно действием концентрированной азотной кислоты, как правило, в присутствии концентрированной серной кислоты).

$$C_6H_6 + HNO_3 \rightarrow C_6H_5NO_2 + H_2O.$$

3в. Образование эфиров азотной кислоты и спиртов (действие смеси концентрированных азотной и серной кислот).

$$C_3H_5(OH)_3 + 3HNO_3 \rightarrow C_3H_5(ONO_2)_3 + 3H_2O.$$
 глицерин тринитрат глицерина

# Применение.

Азотная кислота  $HNO_3$  – в производстве минеральных удобрений (нитрат аммония), взрывчатых веществ, кислота-окислитель в лабораторной практике.

Нитрат калия (калийная селитра)  $KNO_3$  — минеральное удобрение (содержит два питательных элемента — азот и калий), компонент окислительных смесей, пиротехнических составов, черного пороха.

$$2KNO_3 + 3C + S \rightarrow N_2 + 3CO_2 + K_2S$$
.

Нитрат натрия (натриевая селитра)  $NaNO_3$  — в цветной металлургии для выделения металлов в виде солей (хроматов, вольфраматов) из природных источников.

Нитрат аммония (аммиачная селитра)  $NH_4NO_3$  — минеральное азотное удобрение, окислитель в бризантных взрывчатых веществах (аммонал).

$$3NH_4NO_3 + 2Al \rightarrow 3N_2 + 6H_2O + Al_2O_3$$
.

Нитрат бария  $Ba(NO_3)_2$  — для окрашивания пламени в фейерверках, реагент в аналитической практике (осадитель сульфатов, карбонатов, фосфатов, хроматов).

# Соединения азота в нескольких различных валентных состояниях

Азидоводород  $HN_3$  Азиды  $N_3^-$  Галогеназиды  $XN_3$  Оксонитрид азота  $N_2O$ 

## Получение.

1. Реакции конденсации с участием соединений, содержащих NH<sub>2</sub>-группу.

$$N_2H_4 + HNO_2 \rightarrow HN_3 + 2H_2O$$
,  
 $N_2O + NaNH_2 \rightarrow NaN_3 + H_2O$ .

2. Обменные реакции.

$$NaN_3 + egin{array}{cccc} H_2SO_4 \ KOHU & HN_3 + Na_2SO_4 \ AgNO_3 & 
ightarrow & AgN_3 \downarrow + NaNO_3 \ Pb(NO_3) & Pb(N_3)_2 \downarrow + NaNO_3 \end{array}$$

3. Галогеназиды получаются действием галогенов  $X_2$  или гипогалогенитов  $OX^-$  на азиды.

$$\begin{array}{c} AgN_3+X_2 \\ NaN_3+NaOCl+CH_3COOH \end{array} 
ightarrow \begin{array}{c} AgX+XN_3 \\ CH_3COONa+ClN_3 \end{array}$$
 (в эфире)

4. Оксонитрид азота  $N_2O$  получают термическом разложением нитрата аммония или нитрита гидроксиламмония.

$$NH_4NO_3 \rightarrow N_2O + H_2O$$
,  
 $(NH_3OH)NO_2 \rightarrow N_2O + 2H_2O$ .

5. Оксонитрид азота  $N_2$ О образуется в смеси с другими веществами при восстановлении азотной кислоты активными металлами.

$$4Mg + 10HNO_3 \rightarrow 4Mg(NO_3)_2 + N_2O + 5H_2O.$$

## Строение.

Структурные формулы азидоводородной кислоты, азид-иона и оксонитрида азота показывают, что в этих частицах атомы азота связаны непосредственно друг с другом. Это объясняет тенденцию образования молекулы азота  $N_2$  при химических превращениях. Азид-ион представляет собой симметричную линейную частицу.

$$\mathbf{H} - \bar{\mathbf{N}} = \bar{\mathbf{N}}^{\ominus} = \bar{\mathbf{N}}^{\ominus} \qquad {}^{\ominus}_{\bar{\mathbf{N}}} = \mathbf{N}^{\ominus} = \bar{\mathbf{N}}^{\ominus} \qquad \bar{\mathbf{N}} \equiv \mathbf{N}^{\ominus} - \bar{\mathbf{O}}^{\ominus}$$

Эти соединения можно рассматривать как производные азотной кислоты или нитратов (первоначально, до замещения, содержащих  $N^{+5}$ ), в которых все атомы кислорода  $O^{-2}$  или их часть замещены азотом  $N^{-3}$ . В свете этого азидоводородная кислота представляет собой динитридоазотную кислоту, азид-ион – динитридонитрат-ион. Наличие мотива азотной кислоты и нитратиона объясняет их окислительные свойства. Продуктом восстановления  $HN_3$  и азидов обычно является азот.

#### Физические свойства.

Азидоводородная кислота  $HN_3$  – бесцветная жидкость, пл.  $-80~^{\circ}C$ , кип.  $+36~^{\circ}C$ .

Азиды — твердые вещества. Растворяются в воде азиды щелочных металлов и аммония. Нерастворимы  $AgN_3$ ,  $Pb(N_3)_2$ ,  $Hg_2(N_3)_2$ ,  $TlN_3$ .

 $N_2O$  – бесцветный газ.

#### Химические свойства.

- 1. Обменные реакции. Характерны для НN<sub>3</sub>, азидов.
- 1a. HN<sub>3</sub> проявляет все свойства кислот. Кислота слабая.

1б. Галогеназиды подвергаются гидролизу. Природа продуктов гидролиза подчеркивает положительное состояние окисление галогена в галогеназидах, подобно нитридам хлора, брома, йода.

$$ClN_3 + H_2O \rightarrow HOCl + HN_3$$
,  
 $ClN_3 + 2NaOH \rightarrow NaOCl + NaN_3 + H_2O$ .

Эти реакции напоминают взаимодействие галогенов с водой и щелочью с той разницей, что на месте галогенид-иона в реакции находится азид-ион.

Это обстоятельство, а также низкая растворимость азидов и галогенидов в воде для одних и тех же катионов металлов в совокупности с рядом других химических свойств азидов позволяют рассматривать азиды как <u>псевдогалогениды</u>. Сходство с галогенидами обнаруживают также некоторые углеродсодержащие анионы, например, цианиды CN<sup>-</sup>, роданиды SCN<sup>-</sup>, цианаты OCN<sup>-</sup>. Они будут рассматриваться в разделе «Углерод».

- 2. Окислительно-восстановительные реакции:
- 2а. Внутримолекулярное окисление-восстановление. По этому пути протекает термическое разложение. Одним из продуктов реакции является азот  $N_2$ .

2б. Восстановительные свойства. Выражены слабо. Азиды окисляются до  $N_2$ . Оксонитрид азота  $N_2$ О трудно окисляется до  $N_2$ О. Процесс может продолжаться дальнейшим окислением  $N_2$ О (см. химические свойства  $N_2$ О).

$$NaN_3+rac{I_2}{H_2SO_4+I_2}
ightarrow N_2+rac{NaI}{HI+Na_2SO_4}$$
  $N_2O+rac{H_2SO_4}{KMnO_4+H_2SO_4}
ightarrow NO+rac{SO_2}{K_2SO_4+MnSO_4} + H_2O$  © 2008 – 2012 А.А.Сибиркин

2в. Окислительные свойства  $HN_3$  и азидов. Основной принцип превращения — два атома азота образуют  $N_2$ , а третий переходит в  $N^{-3}$  в соответствующей форме (аммиак, амид-ион или ион аммония), например,

$$HN_3 + 3H^+ + 2e^- \rightarrow N_2 + NH_4^+$$
.

Таким образом, коэффициенты при  $N_2$  и ионе аммония среди продуктов реакции будут одинаковыми. Этот процесс протекает в водных растворах при окислении большинства веществ, кроме соединений  $N^{+3}$ .

Смесь азидоводорода и концентрированной соляной кислоты окисляет подобно «царской водке».

$$\begin{array}{c} Au \\ Pt \end{array} + HN_3 + HCl \rightarrow N_2 + NH_4Cl + \begin{array}{c} HAuCl_4 \\ H_2PtCl_6 \end{array}$$

2г. Азидоводород и азиды в кислых средах окисляют соединения  $N^{+3}$  до  $N_2O$ . Процесс идет через стадию нитрозилазида  $NON_3$ , имеющего строение:

$$O = \bar{N} - \bar{N} = N = \bar{N}^{\ominus} = \bar{N}^{\ominus}$$

$$NaN_3 + NOCl \rightarrow NaCl + NON_3$$
.

Нитрозилазид в момент получения разлагается на эквимолярную смесь  $N_2O$  и  $N_2$ . Коэффициенты при этих продуктах реакции должны быть одинаковыми.

$$NON_3 \rightarrow N_2O + N_2$$
.

Примеры превращений:

$$\begin{array}{ccc} HN_3 \\ NaN_3 \end{array} + \begin{array}{ccc} HNO_2 \\ NaNO_2 + H_2SO_4 \end{array} \\ \longrightarrow N_2O + N_2 + \begin{array}{ccc} H_2O \\ Na_2SO_4 + H_2O \end{array}$$

аналогию обсуждаемых процессов Можно отметить рассмотренными ранее в химии соединений азота. Если считать, что азид-ион происходит от азотной кислоты, то в азид-ионе один находящийся В ИЗ атомов азота, центре, ОНЖОМ периферических «нитратным», a два «нитридными». «Нитратный» атом азота логически соотносится с азотной кислотой и нитратами, а «нитридный» генетически связан с аммиаком, амидами, имидами и солями аммония.

Один из «нитридных» атомов азота претерпевает окисление действием  $N^{+3}$  (входящим в состав азотистой кислоты, нитритов, производных нитрозила), в результате чего образуется азот  $N_2$ . Аналогичным процессом является, например, образование азота при окислении солей аммония нитритами. Образование  $N_2$ О означает, что а азид-ионе остались неизмененными концевой «нитридный» атом азота и центральный «нитратный» атом азота. Второй «нитридный» атом азота покидает молекулу, и на его место входит «оксидный» кислород  $O^{-2}$ .

2д. Окислительные свойства  $N_2$ О связаны с отдачей атома кислорода восстановителю. Движущей силой процесса является образование прочной молекулы  $N_2$ , что способствует выделению большого количества теплоты и повышению температуры пламени. Приведенные ниже в качестве примеров реакции протекают с газообразным  $N_2$ О при нагревании.

2е. Взаимодействие (конденсация)  $N_2O$  с амидами позволяет заместить «оксидный» кислород на «нитридный» азот. Так получаются азиды.

$$N_2O + NaNH_2 \rightarrow NaN_3 + H_2O.$$
© 2008 – 2012 А.А.Сибиркин

2ж. Диспропорционирование. Сопровождает термическое разложение  $N_2O$ .

$$2N_2O \rightarrow 2NO + N_2$$
 (700 °C)

При контакте  $N_2$ O с расплавом щелочи процесс дополняется побочной реакцией диспропорционирования NO (см. химические свойства NO), так что в конечном счете получаются нитриты и азот.

$$3N_2O + 2NaOH \rightarrow 2NaNO_2 + 2N_2 + H_2O$$
.

Если условий для диспропорционирования  $N_2O$  не создано, то реакция оксонитрида азота со щелочью не протекает.

### Применение.

Оксонитрид азота (закись азота, веселящий газ)  $N_2O$  – используется для газового наркоза в медицине, является окислителем в горелках атомно-абсорбционных спектрометров.

Азиды тяжелых металлов  $Pb(N_3)_2$ ,  $Hg_2(N_3)_2$ ,  $AgN_3$  – инициирующие взрывчатые вещества.

Азид натрия  $NaN_3$  — источник высокочистого азота в лаборатории.

# A3OT

# Составитель: Алексей Алексеевич Сибиркин

Конспект лекций по курсу неорганической химии